המאמר המוזכר לעיל הינו חשוב גם בשל פיתוח הרעיון של פוטנציאל סקלרי. הכוח הכבידתי שפועל על גוף הוא, בשפה מודרנית, ווקטור, שלו גודל וכיוון. פונקציית פוטנציאל היא פונקציה סקלרית שמגדירה כיצד הווקטורים יתנהגו. פונקציה סקלרית היא מבחינה חישובית וקונספטואלית נוחה יותר לשימוש מאשר פונקציה ווקטורית.
אלכסיס קלרו הציע לראשונה את הרעיון ב-1743 כאשר עבד על בעיה דומה, למרות שהוא עשה שימוש בצורת הסקה גאומטרית-ניוטונית. לפלס תיאר את עבודתו של קלרו כשייכת "למחלקה של היצירות המתמטיות היפות ביותר". אף על פי כן, Rouse Ball טוען ש-"ניצני הרעיון מופיעים אצל ז'וזף לואי לגראנז', אשר השתמש בפוטנציאל במאמריו מהשנים 1773, 1777 ו-1780". המונח "פוטנציאל" עצמו הוא אודות לדניאל ברנולי, שהציג אותו בספרו מ-1738 הידרודינמיקה. עם זאת, Rouse Ball טוען גם שבמונח "פונקציית פוטנציאל" לא נעשה שימוש (במובן של פונקציה V של הקואורדינטות במרחב) עד חיבורו משנת 1828 של ג'ורג' גרין Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism.
לפלס יישם את שפת הקלקולוס לפונקציית הפוטנציאל והראה שהוא תמיד מקיים את המשוואה הדיפרנציאלית:
.
תוצאה אנלוגית עבור פוטנציאל המהירות של זורם נגזרה מספר שנים קודם לכן על ידי לאונרד אוילר.
עבודת ההמשך של לפלס על משיכה כבידתית הייתה מבוססת על התוצאה הזאת. הגודל זכה לשם הריכוז של V וערכו בנקודה מעיד על ההבדל בין ערכו של V שם לערך הממוצע שלו בסביבה של הנקודה. משוואת לפלס, מקרה פרטי של משוואת פואסון, מופיעה רבות בפיזיקה מתמטית. מושג הפוטנציאל מופיע במכניקת הזורמים, אלקטרומגנטיות, ותחומים אחרים. Rouse Ball שיער שניתן לפרש את הופעת מושג הפוטנציאל "כסימן החיצוני" של אחת מהצורות האפריוריות בתאוריית התפיסה של קאנט.
ההרמוניות הספריות התבררו כקריטיות להשגת פתרונות מעשיים למשוואת לפלס. משוואות לפלס בקואורדינטות כדוריות, כמו אלו שמשמשות למיפוי השמיים, ניתנות לפישוט, באמצעות שיטת הפרדת המשתנים, לחלק רדיאלי, התלוי רק במרחק מהנקודה המרכזית, וחלק זוויתי או כדורי. הפתרון לחלק הכדורי של המשוואה ניתן אז לביטוי כטור של ההרמוניות הספריות של לפלס.
אין תגובות:
הוסף רשומת תגובה