אחד הנושאים השנויים במחלוקת במאה ה-18 היה בעיית שלושת הגופים, או כיצד כדור הארץ, הירח, והשמש נעים אחד סביב השני. באמצעות שימוש בשיטות הקלקולוס של לייבניץ, קלרו היה מסוגל לנסח מחדש את הבעיה בעזרת ארבע משוואות דיפרנציאליות. אף על פי כן, משוואות אלו הניבו רק פתרונות מקורבים, ולא אפשרו ביצוע חישובים מדויקים. נושא אחר שעדיין נותר לא פתור בהקשר של בעיית שלושת הגופים הוא איך קו האפסידים של הירח סובב כאשר הירח נע. אפילו ניוטון יכול היה לנבא קצב פרצסיה שהוא רק מחצית מהערך האמיתי עבור מסלול הירח. נושא זה תעתע באסטרונומים רבים. למעשה, קלרו בתחילה החשיב את מקור הבעיה ככה לא מובן, שהוא שקל להציע חוק משיכה חדש כחוק הכבידה העולמי.
בעיית האפסידים הייתה נושא "חם" באירופה דאז. יחד עם קלרו, היו שני מתמטיקאים נוספים שהיו במירוץ לספק את ההסבר הראשון לבעיית שלשות הגופים: לאונרד אוילר ו-ז'אן לה רון ד'אלמבר. אוילר וד'אלמבר האמינו שיש לעשות שימוש בכלים שונים מהחוקים הניוטוניים כדי לפתור את בעיית שלושת הגופים. אוילר האמין שחוק היפוך הריבוע היה זקוק לשינוי רציני על מנת להסביר את תנועת האפסידים של הירח.
על אף התחרות הקדחתנית למצוא פתרון נכון, קלרו השיג פתרון מקורב גאוני לבעיית שלושת הגופים. ב-1750 הוא זכה בפרס מטעם האקדמיה הרוסית למדעים על חיבורו Théorie de la lune. בחיבור קלרו הצליח לחשב בהצלחה את התאריך בו ישוב השביט של האלי בשנת 1759. ה-Théorie de la lune הוא מאוד ניוטוני בסגנון שלו. חיבור זה מכיל את ההסבר של תנועת האפסידים של הירח. קלרו הצליח לערוך אנליזה מתמטית מסדרים גבוהים יותר לבעיה, ולכן הצליח להשיג תוצאה שתואמת את התצפיות. לאחר חיבור זה פרסם קלרו ב-1754 מספר טבלאות ירחיות, אשר אותן הוא חישב באמצעות צורה של טרנספורם פורייה דיסקרטי.
התוצאה של הפתרון החדש של קלרו הייתה יותר מלהוכיח שחוק הכבידה של ניוטון היה נכון. להתרה החלקית של בעיית שלושת הגופים הייתה גם חשיבות מעשית. היא אפשרה למלחים לקבוע את הכיוון האורכי של הספינות שלהם, מה שהיה קריטי לא רק בהפלגה ליעדים, אלא גם במציאת הדרך חזרה הביתה. לכך היו גם השלכות כלכליות מרחיקות לכת, משום שכך מלחים יכלו למצוא בקלות רבה יותר יעדי מסחר בהתבסס על קווי האורך שלהם.
בהמשך חייו קלרו פרסם כתב מגוון מאמרים על מסלול הירח, ועל הפרטורבציה של התנועה של שביטים על ידי כוכבי הלכת, בייחוד על הנתיב של השביט של האלי. הוא גם יישם את המתמטיקה כדי לחקור את כוכב הלכת נוגה, וערך מדידות מדויקות של גודלו של כוכב הלכת ומרחקו מכדור הארץ. זה היה החישוב המדויק הראשון של גודלו של נוגה.
אין תגובות:
הוסף רשומת תגובה